ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.03919
13
32

Pretraining by Backtranslation for End-to-end ASR in Low-Resource Settings

10 December 2018
Matthew Wiesner
Adithya Renduchintala
Shinji Watanabe
Shuoyang Ding
Najim Dehak
Sanjeev Khudanpur
ArXivPDFHTML
Abstract

We explore training attention-based encoder-decoder ASR in low-resource settings. These models perform poorly when trained on small amounts of transcribed speech, in part because they depend on having sufficient target-side text to train the attention and decoder networks. In this paper we address this shortcoming by pretraining our network parameters using only text-based data and transcribed speech from other languages. We analyze the relative contributions of both sources of data. Across 3 test languages, our text-based approach resulted in a 20% average relative improvement over a text-based augmentation technique without pretraining. Using transcribed speech from nearby languages gives a further 20-30% relative reduction in character error rate.

View on arXiv
Comments on this paper