ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.03621
14
36

Learning Non-Uniform Hypergraph for Multi-Object Tracking

10 December 2018
Longyin Wen
Dawei Du
Shengkun Li
Xiao Bian
Siwei Lyu
    VOT
ArXivPDFHTML
Abstract

The majority of Multi-Object Tracking (MOT) algorithms based on the tracking-by-detection scheme do not use higher order dependencies among objects or tracklets, which makes them less effective in handling complex scenarios. In this work, we present a new near-online MOT algorithm based on non-uniform hypergraph, which can model different degrees of dependencies among tracklets in a unified objective. The nodes in the hypergraph correspond to the tracklets and the hyperedges with different degrees encode various kinds of dependencies among them. Specifically, instead of setting the weights of hyperedges with different degrees empirically, they are learned automatically using the structural support vector machine algorithm (SSVM). Several experiments are carried out on various challenging datasets (i.e., PETS09, ParkingLot sequence, SubwayFace, and MOT16 benchmark), to demonstrate that our method achieves favorable performance against the state-of-the-art MOT methods.

View on arXiv
Comments on this paper