ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.02664
20
118

Recursive Visual Attention in Visual Dialog

6 December 2018
Yulei Niu
Hanwang Zhang
Manli Zhang
Jianhong Zhang
Zhiwu Lu
Ji-Rong Wen
ArXivPDFHTML
Abstract

Visual dialog is a challenging vision-language task, which requires the agent to answer multi-round questions about an image. It typically needs to address two major problems: (1) How to answer visually-grounded questions, which is the core challenge in visual question answering (VQA); (2) How to infer the co-reference between questions and the dialog history. An example of visual co-reference is: pronouns (\eg, ``they'') in the question (\eg, ``Are they on or off?'') are linked with nouns (\eg, ``lamps'') appearing in the dialog history (\eg, ``How many lamps are there?'') and the object grounded in the image. In this work, to resolve the visual co-reference for visual dialog, we propose a novel attention mechanism called Recursive Visual Attention (RvA). Specifically, our dialog agent browses the dialog history until the agent has sufficient confidence in the visual co-reference resolution, and refines the visual attention recursively. The quantitative and qualitative experimental results on the large-scale VisDial v0.9 and v1.0 datasets demonstrate that the proposed RvA not only outperforms the state-of-the-art methods, but also achieves reasonable recursion and interpretable attention maps without additional annotations. The code is available at \url{https://github.com/yuleiniu/rva}.

View on arXiv
Comments on this paper