ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.02500
41
28

A Parallel Divide-and-Conquer based Evolutionary Algorithm for Large-scale Optimization

6 December 2018
Peng Yang
K. Tang
Xin Yao
ArXiv (abs)PDFHTML
Abstract

Large-scale optimization problems that involve thousands of decision variables have extensively arisen from various industrial areas. As a powerful optimization tool for many real-world applications, evolutionary algorithms (EAs) fail to solve the emerging large-scale problems both effectively and efficiently. In this paper, we propose a novel Divide-and-Conquer (DC) based EA that can not only produce high-quality solution by solving sub-problems separately, but also highly utilizes the power of parallel computing by solving the sub-problems simultaneously. Existing DC-based EAs that were deemed to enjoy the same advantages of the proposed algorithm, are shown to be practically incompatible with the parallel computing scheme, unless some trade-offs are made by compromising the solution quality.

View on arXiv
Comments on this paper