ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.01880
9
490

Learning to Compose Dynamic Tree Structures for Visual Contexts

5 December 2018
Kaihua Tang
Hanwang Zhang
Baoyuan Wu
Wenhan Luo
Wei Liu
ArXivPDFHTML
Abstract

We propose to compose dynamic tree structures that place the objects in an image into a visual context, helping visual reasoning tasks such as scene graph generation and visual Q&A. Our visual context tree model, dubbed VCTree, has two key advantages over existing structured object representations including chains and fully-connected graphs: 1) The efficient and expressive binary tree encodes the inherent parallel/hierarchical relationships among objects, e.g., "clothes" and "pants" are usually co-occur and belong to "person"; 2) the dynamic structure varies from image to image and task to task, allowing more content-/task-specific message passing among objects. To construct a VCTree, we design a score function that calculates the task-dependent validity between each object pair, and the tree is the binary version of the maximum spanning tree from the score matrix. Then, visual contexts are encoded by bidirectional TreeLSTM and decoded by task-specific models. We develop a hybrid learning procedure which integrates end-task supervised learning and the tree structure reinforcement learning, where the former's evaluation result serves as a self-critic for the latter's structure exploration. Experimental results on two benchmarks, which require reasoning over contexts: Visual Genome for scene graph generation and VQA2.0 for visual Q&A, show that VCTree outperforms state-of-the-art results while discovering interpretable visual context structures.

View on arXiv
Comments on this paper