ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.01478
11
3

Matrix Factorization via Deep Learning

4 December 2018
Duc Minh Nguyen
Evaggelia Tsiligianni
Nikos Deligiannis
ArXiv (abs)PDFHTML
Abstract

Matrix completion is one of the key problems in signal processing and machine learning. In recent years, deep-learning-based models have achieved state-of-the-art results in matrix completion. Nevertheless, they suffer from two drawbacks: (i) they can not be extended easily to rows or columns unseen during training; and (ii) their results are often degraded in case discrete predictions are required. This paper addresses these two drawbacks by presenting a deep matrix factorization model and a generic method to allow joint training of the factorization model and the discretization operator. Experiments on a real movie rating dataset show the efficacy of the proposed models.

View on arXiv
Comments on this paper