ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.01114
28
20

Exploring galaxy evolution with generative models

3 December 2018
Kevin Schawinski
M. D. Turp
Ce Zhang
    GAN
ArXivPDFHTML
Abstract

Context. Generative models open up the possibility to interrogate scientific data in a more data-driven way. Aims: We propose a method that uses generative models to explore hypotheses in astrophysics and other areas. We use a neural network to show how we can independently manipulate physical attributes by encoding objects in latent space. Methods: By learning a latent space representation of the data, we can use this network to forward model and explore hypotheses in a data-driven way. We train a neural network to generate artificial data to test hypotheses for the underlying physical processes. Results: We demonstrate this process using a well-studied process in astrophysics, the quenching of star formation in galaxies as they move from low-to high-density environments. This approach can help explore astrophysical and other phenomena in a way that is different from current methods based on simulations and observations.

View on arXiv
Comments on this paper