ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.12929
21
21

Online Abstraction with MDP Homomorphisms for Deep Learning

30 November 2018
Ondrej Biza
Robert W. Platt
    OffRL
ArXivPDFHTML
Abstract

Abstraction of Markov Decision Processes is a useful tool for solving complex problems, as it can ignore unimportant aspects of an environment, simplifying the process of learning an optimal policy. In this paper, we propose a new algorithm for finding abstract MDPs in environments with continuous state spaces. It is based on MDP homomorphisms, a structure-preserving mapping between MDPs. We demonstrate our algorithm's ability to learn abstractions from collected experience and show how to reuse the abstractions to guide exploration in new tasks the agent encounters. Our novel task transfer method outperforms baselines based on a deep Q-network in the majority of our experiments. The source code is at https://github.com/ondrejba/aamas_19.

View on arXiv
Comments on this paper