ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.12755
168
86

Projection Convolutional Neural Networks for 1-bit CNNs via Discrete Back Propagation

30 November 2018
Jiaxin Gu
Ce Li
Baochang Zhang
J. Han
Xianbin Cao
Jianzhuang Liu
David Doermann
    3DV
ArXivPDFHTML
Abstract

The advancement of deep convolutional neural networks (DCNNs) has driven significant improvement in the accuracy of recognition systems for many computer vision tasks. However, their practical applications are often restricted in resource-constrained environments. In this paper, we introduce projection convolutional neural networks (PCNNs) with a discrete back propagation via projection (DBPP) to improve the performance of binarized neural networks (BNNs). The contributions of our paper include: 1) for the first time, the projection function is exploited to efficiently solve the discrete back propagation problem, which leads to a new highly compressed CNNs (termed PCNNs); 2) by exploiting multiple projections, we learn a set of diverse quantized kernels that compress the full-precision kernels in a more efficient way than those proposed previously; 3) PCNNs achieve the best classification performance compared to other state-of-the-art BNNs on the ImageNet and CIFAR datasets.

View on arXiv
Comments on this paper