ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.12273
11
5

On the Transferability of Representations in Neural Networks Between Datasets and Tasks

29 November 2018
Haytham M. Fayek
L. Cavedon
H. Wu
ArXivPDFHTML
Abstract

Deep networks, composed of multiple layers of hierarchical distributed representations, tend to learn low-level features in initial layers and transition to high-level features towards final layers. Paradigms such as transfer learning, multi-task learning, and continual learning leverage this notion of generic hierarchical distributed representations to share knowledge across datasets and tasks. Herein, we study the layer-wise transferability of representations in deep networks across a few datasets and tasks and note some interesting empirical observations.

View on arXiv
Comments on this paper