ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.12016
47
4

3D Shape Reconstruction from a Single 2D Image via 2D-3D Self-Consistency

29 November 2018
Yi-Lun Liao
Yao-Cheng Yang
Y. Wang
    3DV
ArXiv (abs)PDFHTML
Abstract

Aiming at inferring 3D shapes from 2D images, 3D shape reconstruction has drawn huge attention from researchers in computer vision and deep learning communities. However, it is not practical to assume that 2D input images and their associated ground truth 3D shapes are always available during training. In this paper, we propose a framework for semi-supervised 3D reconstruction. This is realized by our introduced 2D-3D self-consistency, which aligns the predicted 3D models and the projected 2D foreground segmentation masks. Moreover, our model not only enables recovering 3D shapes with the corresponding 2D masks, camera pose information can be jointly disentangled and predicted, even such supervision is never available during training. In the experiments, we qualitatively and quantitatively demonstrate the effectiveness of our model, which performs favorably against state-of-the-art approaches in either supervised or semi-supervised settings.

View on arXiv
Comments on this paper