ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.11507
29
89

One-Shot Instance Segmentation

28 November 2018
Claudio Michaelis
Ivan Ustyuzhaninov
Matthias Bethge
Alexander S. Ecker
    ISeg
ArXivPDFHTML
Abstract

We tackle the problem of one-shot instance segmentation: Given an example image of a novel, previously unknown object category, find and segment all objects of this category within a complex scene. To address this challenging new task, we propose Siamese Mask R-CNN. It extends Mask R-CNN by a Siamese backbone encoding both reference image and scene, allowing it to target detection and segmentation towards the reference category. We demonstrate empirical results on MS Coco highlighting challenges of the one-shot setting: while transferring knowledge about instance segmentation to novel object categories works very well, targeting the detection network towards the reference category appears to be more difficult. Our work provides a first strong baseline for one-shot instance segmentation and will hopefully inspire further research into more powerful and flexible scene analysis algorithms. Code is available at: https://github.com/bethgelab/siamese-mask-rcnn

View on arXiv
Comments on this paper