ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.11264
25
249

Synthesizing Tabular Data using Generative Adversarial Networks

27 November 2018
L. Xu
K. Veeramachaneni
    CML
    GAN
ArXivPDFHTML
Abstract

Generative adversarial networks (GANs) implicitly learn the probability distribution of a dataset and can draw samples from the distribution. This paper presents, Tabular GAN (TGAN), a generative adversarial network which can generate tabular data like medical or educational records. Using the power of deep neural networks, TGAN generates high-quality and fully synthetic tables while simultaneously generating discrete and continuous variables. When we evaluate our model on three datasets, we find that TGAN outperforms conventional statistical generative models in both capturing the correlation between columns and scaling up for large datasets.

View on arXiv
Comments on this paper