ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.10520
14
5

Predicting Language Recovery after Stroke with Convolutional Networks on Stitched MRI

26 November 2018
Yusuf H. Roohani
Noor Sajid
Pranava Madhyastha
Cathy J. Price
T. Hope
ArXiv (abs)PDFHTML
Abstract

One third of stroke survivors have language difficulties. Emerging evidence suggests that their likelihood of recovery depends mainly on the damage to language centers. Thus previous research for predicting language recovery post-stroke has focused on identifying damaged regions of the brain. In this paper, we introduce a novel method where we only make use of stitched 2-dimensional cross-sections of raw MRI scans in a deep convolutional neural network setup to predict language recovery post-stroke. Our results show: a) the proposed model that only uses MRI scans has comparable performance to models that are dependent on lesion specific information; b) the features learned by our model are complementary to the lesion specific information and the combination of both appear to outperform previously reported results in similar settings. We further analyse the CNN model for understanding regions in brain that are responsible for arriving at these predictions using gradient based saliency maps. Our findings are in line with previous lesion studies.

View on arXiv
Comments on this paper