ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.09828
6
37

Evolutionary-Neural Hybrid Agents for Architecture Search

24 November 2018
Krzysztof Maziarz
Mingxing Tan
A. Khorlin
Quentin de Laroussilhe
Andrea Gesmundo
ArXivPDFHTML
Abstract

Neural Architecture Search has shown potential to automate the design of neural networks. Deep Reinforcement Learning based agents can learn complex architectural patterns, as well as explore a vast and compositional search space. On the other hand, evolutionary algorithms offer higher sample efficiency, which is critical for such a resource intensive application. In order to capture the best of both worlds, we propose a class of Evolutionary-Neural hybrid agents (Evo-NAS). We show that the Evo-NAS agent outperforms both neural and evolutionary agents when applied to architecture search for a suite of text and image classification benchmarks. On a high-complexity architecture search space for image classification, the Evo-NAS agent surpasses the accuracy achieved by commonly used agents with only 1/3 of the search cost.

View on arXiv
Comments on this paper