ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.09236
17
4

Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Image Stylization

22 November 2018
Nikolay Jetchev
Urs M. Bergmann
Gökhan Yildirim
    DiffM
ArXiv (abs)PDFHTML
Abstract

Parametric generative deep models are state-of-the-art for photo and non-photo realistic image stylization. However, learning complicated image representations requires compute-intense models parametrized by a huge number of weights, which in turn requires large datasets to make learning successful. Non-parametric exemplar-based generation is a technique that works well to reproduce style from small datasets, but is also compute-intensive. These aspects are a drawback for the practice of digital AI artists: typically one wants to use a small set of stylization images, and needs a fast flexible model in order to experiment with it. With this motivation, our work has these contributions: (i) a novel stylization method called Fully Adversarial Mosaics (FAMOS) that combines the strengths of both parametric and non-parametric approaches; (ii) multiple ablations and image examples that analyze the method and show its capabilities; (iii) source code that will empower artists and machine learning researchers to use and modify FAMOS.

View on arXiv
Comments on this paper