ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.08979
19
66

An Efficient Approach to Informative Feature Extraction from Multimodal Data

22 November 2018
Lichen Wang
Jiaxiang Wu
Shao-Lun Huang
Lizhong Zheng
Xiangxiang Xu
Lin Zhang
Junzhou Huang
ArXivPDFHTML
Abstract

One primary focus in multimodal feature extraction is to find the representations of individual modalities that are maximally correlated. As a well-known measure of dependence, the Hirschfeld-Gebelein-R\'{e}nyi (HGR) maximal correlation becomes an appealing objective because of its operational meaning and desirable properties. However, the strict whitening constraints formalized in the HGR maximal correlation limit its application. To address this problem, this paper proposes Soft-HGR, a novel framework to extract informative features from multiple data modalities. Specifically, our framework prevents the "hard" whitening constraints, while simultaneously preserving the same feature geometry as in the HGR maximal correlation. The objective of Soft-HGR is straightforward, only involving two inner products, which guarantees the efficiency and stability in optimization. We further generalize the framework to handle more than two modalities and missing modalities. When labels are partially available, we enhance the discriminative power of the feature representations by making a semi-supervised adaptation. Empirical evaluation implies that our approach learns more informative feature mappings and is more efficient to optimize.

View on arXiv
Comments on this paper