ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.08890
6
11

Learning from Multiview Correlations in Open-Domain Videos

21 November 2018
Nils Holzenberger
Shruti Palaskar
Pranava Madhyastha
Florian Metze
R. Arora
    SSL
ArXivPDFHTML
Abstract

An increasing number of datasets contain multiple views, such as video, sound and automatic captions. A basic challenge in representation learning is how to leverage multiple views to learn better representations. This is further complicated by the existence of a latent alignment between views, such as between speech and its transcription, and by the multitude of choices for the learning objective. We explore an advanced, correlation-based representation learning method on a 4-way parallel, multimodal dataset, and assess the quality of the learned representations on retrieval-based tasks. We show that the proposed approach produces rich representations that capture most of the information shared across views. Our best models for speech and textual modalities achieve retrieval rates from 70.7% to 96.9% on open-domain, user-generated instructional videos. This shows it is possible to learn reliable representations across disparate, unaligned and noisy modalities, and encourages using the proposed approach on larger datasets.

View on arXiv
Comments on this paper