ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.08716
32
15

Autonomous Dual-Arm Manipulation of Familiar Objects

21 November 2018
D. Pavlichenko
Diego Rodriguez
Max Schwarz
Christian Lenz
Arul Selvam Periyasamy
Sven Behnke
ArXiv (abs)PDFHTML
Abstract

Autonomous dual-arm manipulation is an essential skill to deploy robots in unstructured scenarios. However, this is a challenging undertaking, particularly in terms of perception and planning. Unstructured scenarios are full of objects with different shapes and appearances that have to be grasped in a very specific manner so they can be functionally used. In this paper we present an integrated approach to perform dual-arm pick tasks autonomously. Our method consists of semantic segmentation, object pose estimation, deformable model registration, grasp planning and arm trajectory optimization. The entire pipeline can be executed on-board and is suitable for on-line grasping scenarios. For this, our approach makes use of accumulated knowledge expressed as convolutional neural network models and low-dimensional latent shape spaces. For manipulating objects, we propose a stochastic trajectory optimization that includes a kinematic chain closure constraint. Evaluation in simulation and on the real robot corroborates the feasibility and applicability of the proposed methods on a task of picking up unknown watering cans and drills using both arms.

View on arXiv
Comments on this paper