ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.08196
24
97

SpherePHD: Applying CNNs on a Spherical PolyHeDron Representation of 360 degree Images

20 November 2018
Yeonkun Lee
Jaeseok Jeong
J. Yun
Wonjune Cho
Kuk-Jin Yoon
ArXivPDFHTML
Abstract

Omni-directional cameras have many advantages overconventional cameras in that they have a much wider field-of-view (FOV). Accordingly, several approaches have beenproposed recently to apply convolutional neural networks(CNNs) to omni-directional images for various visual tasks.However, most of them use image representations defined inthe Euclidean space after transforming the omni-directionalviews originally formed in the non-Euclidean space. Thistransformation leads to shape distortion due to nonuniformspatial resolving power and the loss of continuity. Theseeffects make existing convolution kernels experience diffi-culties in extracting meaningful information.This paper presents a novel method to resolve such prob-lems of applying CNNs to omni-directional images. Theproposed method utilizes a spherical polyhedron to rep-resent omni-directional views. This method minimizes thevariance of the spatial resolving power on the sphere sur-face, and includes new convolution and pooling methodsfor the proposed representation. The proposed method canalso be adopted by any existing CNN-based methods. Thefeasibility of the proposed method is demonstrated throughclassification, detection, and semantic segmentation taskswith synthetic and real datasets.

View on arXiv
Comments on this paper