ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.08139
21
0

Adversarial point set registration

20 November 2018
Sergei Divakov
Ivan Oseledets
    3DPC
ArXiv (abs)PDFHTML
Abstract

We present a novel approach to point set registration which is based on one-shot adversarial learning. The idea of the algorithm is inspired by recent successes of generative adversarial networks. Treating the point clouds as three-dimensional probability distributions, we develop a one-shot adversarial optimization procedure, in which we train a critic neural network to distinguish between source and target point sets, while simultaneously learning the parameters of the transformation to trick the critic into confusing the points. In contrast to most existing algorithms for point set registration, ours does not rely on any correspondences between the point clouds. We demonstrate the performance of the algorithm on several challenging benchmarks and compare it to the existing baselines.

View on arXiv
Comments on this paper