ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.07868
14
10

Simulated Autonomous Driving in a Realistic Driving Environment using Deep Reinforcement Learning and a Deterministic Finite State Machine

19 November 2018
Patrick Klose
Rudolf Mester
    AI4CE
ArXivPDFHTML
Abstract

In the field of Autonomous Driving, the system controlling the vehicle can be seen as an agent acting in a complex environment and thus naturally fits into the modern framework of Reinforcement Learning. However, learning to drive can be a challenging task and current results are often restricted to simplified driving environments. To advance the field, we present a method to adaptively restrict the action space of the agent according to its current driving situation and show that it can be used to swiftly learn to drive in a realistic environment based on the Deep Q-Network algorithm.

View on arXiv
Comments on this paper