ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.07415
33
25
v1v2v3v4v5v6v7v8v9 (latest)

MALTS: Matching After Learning to Stretch

18 November 2018
Harsh Parikh
Cynthia Rudin
A. Volfovsky
ArXiv (abs)PDFHTML
Abstract

We introduce a flexible framework for matching in causal inference that produces high quality almost-exact matches. Most prior work in matching uses ad hoc distance metrics, often leading to poor quality matches, particularly when there are irrelevant covariates that degrade the distance metric. In this work, we learn an interpretable distance metric used for matching, which leads to substantially higher quality matches. The distance metric can stretch continuous covariates and matches exactly on categorical covariates. The framework is flexible in that the user can choose the form of distance metric, the type of optimization algorithm, and the type of relaxation for matching. Our ability to learn flexible distance metrics leads to matches that are interpretable and useful for estimation of conditional average treatment effects.

View on arXiv
Comments on this paper