ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.07236
27
11

Robust cross-domain disfluency detection with pattern match networks

17 November 2018
Vicky Zayats
Mari Ostendorf
ArXivPDFHTML
Abstract

In this paper we introduce a novel pattern match neural network architecture that uses neighbor similarity scores as features, eliminating the need for feature engineering in a disfluency detection task. We evaluate the approach in disfluency detection for four different speech genres, showing that the approach is as effective as hand-engineered pattern match features when used on in-domain data and achieves superior performance in cross-domain scenarios.

View on arXiv
Comments on this paper