ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.07190
21
18

Sequential Image-based Attention Network for Inferring Force Estimation without Haptic Sensor

17 November 2018
Hochul Shin
Hyeon Cho
Dongyi Kim
Dae-Kwan Ko
Soo-Chul Lim
Wonjun Hwang
ArXivPDFHTML
Abstract

Humans can infer approximate interaction force between objects from only vision information because we already have learned it through experiences. Based on this idea, we propose a recurrent convolutional neural network-based method using sequential images for inferring interaction force without using a haptic sensor. For training and validating deep learning methods, we collected a large number of images and corresponding interaction forces through an electronic motor-based device. To concentrate on changing shapes of a target object by the external force in images, we propose a sequential image-based attention module, which learns a salient model from temporal dynamics. The proposed sequential image-based attention module consists of a sequential spatial attention module and a sequential channel attention module, which are extended to exploit multiple sequential images. For gaining better accuracy, we also created a weighted average pooling layer for both spatial and channel attention modules. The extensive experimental results verified that the proposed method successfully infers interaction forces under the various conditions, such as different target materials, illumination changes, and external force directions.

View on arXiv
Comments on this paper