ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.05467
15
20

Towards Neural Machine Translation for African Languages

13 November 2018
Jade Z. Abbott
Laura Martinus
ArXivPDFHTML
Abstract

Given that South African education is in crisis, strategies for improvement and sustainability of high-quality, up-to-date education must be explored. In the migration of education online, inclusion of machine translation for low-resourced local languages becomes necessary. This paper aims to spur the use of current neural machine translation (NMT) techniques for low-resourced local languages. The paper demonstrates state-of-the-art performance on English-to-Setswana translation using the Autshumato dataset. The use of the Transformer architecture beat previous techniques by 5.33 BLEU points. This demonstrates the promise of using current NMT techniques for African languages.

View on arXiv
Comments on this paper