ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.04968
21
0

PennyLane: Automatic differentiation of hybrid quantum-classical computations

12 November 2018
V. Bergholm
J. Izaac
Maria Schuld
C. Gogolin
Shahnawaz Ahmed
Vishnu Ajith
M. S. Alam
Guillermo Alonso-Linaje
B. AkashNarayanan
A. Asadi
J. M. Arrazola
Utkarsh Azad
S. Banning
Carsten Blank
T. Bromley
Benjamin A. Cordier
J. Ceroni
A. Delgado
O. D. Matteo
Amintor Dusko
Tanya Garg
Diego Guala
Anthony Joseph Hayes
Ryan Hill
Aroosa Ijaz
T. Isacsson
David Ittah
S. Jahangiri
Prateek Jain
Edward Jiang
Ankit Khandelwal
Korbinian Kottmann
Robert A. Lang
Christina Lee
T. Loke
Angus Lowe
K. McKiernan
Johannes Jakob Meyer
J. A. Montañez-Barrera
Romain Moyard
Zeyue Niu
Lee James O'Riordan
Steven Oud
A. Panigrahi
Chae-Yeun Park
Daniel Polatajko
N. Quesada
Chase Roberts
Nahum Sá
Isidor Schoch
Borun Shi
Shuli Shu
Sukin Sim
Arshpreet Singh
Ingrid Strandberg
J. Soni
A. Száva
Slimane Thabet
R. A. Vargas-Hernández
Trevor Vincent
Nicola Vitucci
Maurice Weber
David Wierichs
R. Wiersema
Moritz Willmann
Vincent Wong
Shao-Fan Zhang
N. Killoran
ArXivPDFHTML
Abstract

PennyLane is a Python 3 software framework for differentiable programming of quantum computers. The library provides a unified architecture for near-term quantum computing devices, supporting both qubit and continuous-variable paradigms. PennyLane's core feature is the ability to compute gradients of variational quantum circuits in a way that is compatible with classical techniques such as backpropagation. PennyLane thus extends the automatic differentiation algorithms common in optimization and machine learning to include quantum and hybrid computations. A plugin system makes the framework compatible with any gate-based quantum simulator or hardware. We provide plugins for hardware providers including the Xanadu Cloud, Amazon Braket, and IBM Quantum, allowing PennyLane optimizations to be run on publicly accessible quantum devices. On the classical front, PennyLane interfaces with accelerated machine learning libraries such as TensorFlow, PyTorch, JAX, and Autograd. PennyLane can be used for the optimization of variational quantum eigensolvers, quantum approximate optimization, quantum machine learning models, and many other applications.

View on arXiv
Comments on this paper