191
773

Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers

Abstract

The fundamental learning theory behind neural networks remains largely open. What classes of functions can neural networks actually learn? Why doesn't the trained neural networks overfit when the it is overparameterized (namely, having more parameters than statistically needed to overfit training data)? In this work, we prove that overparameterized neural networks can learn some notable concept classes, including two and three-layer networks with fewer parameters and smooth activations. Moreover, the learning can be simply done by SGD (stochastic gradient descent) or its variants in polynomial time using polynomially many samples. The sample complexity can also be almost independent of the number of parameters in the overparameterized network.

View on arXiv
Comments on this paper