ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.04423
14
11

When Locally Linear Embedding Hits Boundary

11 November 2018
Hau‐Tieng Wu
Nan Wu
ArXivPDFHTML
Abstract

Based on the Riemannian manifold model, we study the asymptotic behavior of a widely applied unsupervised learning algorithm, locally linear embedding (LLE), when the point cloud is sampled from a compact, smooth manifold with boundary. We show several peculiar behaviors of LLE near the boundary that are different from those diffusion-based algorithms. In particular, we show that LLE pointwisely converges to a mixed-type differential operator with degeneracy and we calculate the convergence rate. The impact of the hyperbolic part of the operator is discussed and we propose a clipped LLE algorithm which is a potential approach to recover the Dirichlet Laplace-Beltrami operator.

View on arXiv
Comments on this paper