ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.04419
16
14

Multi-Temporal Resolution Convolutional Neural Networks for Acoustic Scene Classification

11 November 2018
Alexander Schindler
T. Lidy
Andreas Rauber
ArXivPDFHTML
Abstract

In this paper we present a Deep Neural Network architecture for the task of acoustic scene classification which harnesses information from increasing temporal resolutions of Mel-Spectrogram segments. This architecture is composed of separated parallel Convolutional Neural Networks which learn spectral and temporal representations for each input resolution. The resolutions are chosen to cover fine-grained characteristics of a scene's spectral texture as well as its distribution of acoustic events. The proposed model shows a 3.56% absolute improvement of the best performing single resolution model and 12.49% of the DCASE 2017 Acoustic Scenes Classification task baseline.

View on arXiv
Comments on this paper