ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.04312
9
20

Automatic Brain Structures Segmentation Using Deep Residual Dilated U-Net

10 November 2018
Hongwei Bran Li
A. Zhygallo
Bjoern H. Menze
    SSeg
ArXivPDFHTML
Abstract

Brain image segmentation is used for visualizing and quantifying anatomical structures of the brain. We present an automated ap-proach using 2D deep residual dilated networks which captures rich context information of different tissues for the segmentation of eight brain structures. The proposed system was evaluated in the MICCAI Brain Segmentation Challenge and ranked 9th out of 22 teams. We further compared the method with traditional U-Net using leave-one-subject-out cross-validation setting on the public dataset. Experimental results shows that the proposed method outperforms traditional U-Net (i.e. 80.9% vs 78.3% in averaged Dice score, 4.35mm vs 11.59mm in averaged robust Hausdorff distance) and is computationally efficient.

View on arXiv
Comments on this paper