ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.04028
  4. Cited By
An Overview of Computational Approaches for Interpretation Analysis

An Overview of Computational Approaches for Interpretation Analysis

9 November 2018
Philipp Blandfort
Jörn Hees
D. Patton
ArXivPDFHTML

Papers citing "An Overview of Computational Approaches for Interpretation Analysis"

23 / 23 papers shown
Title
Adversarial Defense based on Structure-to-Signal Autoencoders
Adversarial Defense based on Structure-to-Signal Autoencoders
Joachim Folz
Sebastián M. Palacio
Jörn Hees
Damian Borth
Andreas Dengel
AAML
54
32
0
21 Mar 2018
Interpreting Deep Visual Representations via Network Dissection
Interpreting Deep Visual Representations via Network Dissection
Bolei Zhou
David Bau
A. Oliva
Antonio Torralba
FAtt
MILM
55
324
0
15 Nov 2017
The (Un)reliability of saliency methods
The (Un)reliability of saliency methods
Pieter-Jan Kindermans
Sara Hooker
Julius Adebayo
Maximilian Alber
Kristof T. Schütt
Sven Dähne
D. Erhan
Been Kim
FAtt
XAI
91
684
0
02 Nov 2017
Interpretable Convolutional Neural Networks
Interpretable Convolutional Neural Networks
Quanshi Zhang
Ying Nian Wu
Song-Chun Zhu
FAtt
64
780
0
02 Oct 2017
Explainable Artificial Intelligence: Understanding, Visualizing and
  Interpreting Deep Learning Models
Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models
Wojciech Samek
Thomas Wiegand
K. Müller
XAI
VLM
68
1,188
0
28 Aug 2017
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
278
2,257
0
24 Jun 2017
Explaining Recurrent Neural Network Predictions in Sentiment Analysis
Explaining Recurrent Neural Network Predictions in Sentiment Analysis
L. Arras
G. Montavon
K. Müller
Wojciech Samek
FAtt
50
354
0
22 Jun 2017
Toward Controlled Generation of Text
Toward Controlled Generation of Text
Zhiting Hu
Zichao Yang
Xiaodan Liang
Ruslan Salakhutdinov
Eric Xing
153
990
0
02 Mar 2017
The Mythos of Model Interpretability
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
162
3,685
0
10 Jun 2016
Learning Deep Features for Discriminative Localization
Learning Deep Features for Discriminative Localization
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
SSL
SSeg
FAtt
231
9,298
0
14 Dec 2015
Visualizing Deep Convolutional Neural Networks Using Natural Pre-Images
Visualizing Deep Convolutional Neural Networks Using Natural Pre-Images
Aravindh Mahendran
Andrea Vedaldi
FAtt
68
534
0
07 Dec 2015
Interpretable classifiers using rules and Bayesian analysis: Building a
  better stroke prediction model
Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model
Benjamin Letham
Cynthia Rudin
Tyler H. McCormick
D. Madigan
FAtt
60
743
0
05 Nov 2015
Effective Approaches to Attention-based Neural Machine Translation
Effective Approaches to Attention-based Neural Machine Translation
Thang Luong
Hieu H. Pham
Christopher D. Manning
358
7,955
0
17 Aug 2015
Mining Mid-level Visual Patterns with Deep CNN Activations
Mining Mid-level Visual Patterns with Deep CNN Activations
Yao Li
Lingqiao Liu
Chunhua Shen
Anton Van Den Hengel
49
54
0
21 Jun 2015
Show, Attend and Tell: Neural Image Caption Generation with Visual
  Attention
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
Ke Xu
Jimmy Ba
Ryan Kiros
Kyunghyun Cho
Aaron Courville
Ruslan Salakhutdinov
R. Zemel
Yoshua Bengio
DiffM
318
10,050
0
10 Feb 2015
Striving for Simplicity: The All Convolutional Net
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
228
4,665
0
21 Dec 2014
Automatic Discovery and Optimization of Parts for Image Classification
Automatic Discovery and Optimization of Parts for Image Classification
S. N. Parizi
Andrea Vedaldi
Andrew Zisserman
Pedro F. Felzenszwalb
OCL
53
59
0
20 Dec 2014
Understanding Deep Image Representations by Inverting Them
Understanding Deep Image Representations by Inverting Them
Aravindh Mahendran
Andrea Vedaldi
FAtt
107
1,963
0
26 Nov 2014
Deep Inside Convolutional Networks: Visualising Image Classification
  Models and Saliency Maps
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
289
7,279
0
20 Dec 2013
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
508
15,861
0
12 Nov 2013
A Joint Model of Language and Perception for Grounded Attribute Learning
A Joint Model of Language and Perception for Grounded Attribute Learning
Cynthia Matuszek
Nicholas FitzGerald
Luke Zettlemoyer
Liefeng Bo
Dieter Fox
LM&Ro
75
316
0
27 Jun 2012
DirectLiNGAM: A direct method for learning a linear non-Gaussian
  structural equation model
DirectLiNGAM: A direct method for learning a linear non-Gaussian structural equation model
Shohei Shimizu
Takanori Inazumi
Yasuhiro Sogawa
Aapo Hyvarinen
Yoshinobu Kawahara
Takashi Washio
P. Hoyer
K. Bollen
CML
97
510
0
13 Jan 2011
How to Explain Individual Classification Decisions
How to Explain Individual Classification Decisions
D. Baehrens
T. Schroeter
Stefan Harmeling
M. Kawanabe
K. Hansen
K. Müller
FAtt
126
1,102
0
06 Dec 2009
1