ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.03752
8
1

DeepSaucer: Unified Environment for Verifying Deep Neural Networks

9 November 2018
Naoto Sato
Duong Nguyen Anh
M. Kaneko
Yuichiroh Nakagawa
H. Ogawa
Son Hoang
Michael J. Butler
ArXivPDFHTML
Abstract

In recent years, a number of methods for verifying DNNs have been developed. Because the approaches of the methods differ and have their own limitations, we think that a number of verification methods should be applied to a developed DNN. To apply a number of methods to the DNN, it is necessary to translate either the implementation of the DNN or the verification method so that one runs in the same environment as the other. Since those translations are time-consuming, a utility tool, named DeepSaucer, which helps to retain and reuse implementations of DNNs, verification methods, and their environments, is proposed. In DeepSaucer, code snippets of loading DNNs, running verification methods, and creating their environments are retained and reused as software assets in order to reduce cost of verifying DNNs. The feasibility of DeepSaucer is confirmed by implementing it on the basis of Anaconda, which provides virtual environment for loading a DNN and running a verification method. In addition, the effectiveness of DeepSaucer is demonstrated by usecase examples.

View on arXiv
Comments on this paper