ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.03571
24
4

Intrinsic Geometric Vulnerability of High-Dimensional Artificial Intelligence

8 November 2018
Luca Bortolussi
G. Sanguinetti
    AAML
ArXivPDFHTML
Abstract

The success of modern Artificial Intelligence (AI) technologies depends critically on the ability to learn non-linear functional dependencies from large, high dimensional data sets. Despite recent high-profile successes, empirical evidence indicates that the high predictive performance is often paired with low robustness, making AI systems potentially vulnerable to adversarial attacks. In this report, we provide a simple intuitive argument suggesting that high performance and vulnerability are intrinsically coupled, and largely dependent on the geometry of typical, high-dimensional data sets. Our work highlights a major potential pitfall of modern AI systems, and suggests practical research directions to ameliorate the problem.

View on arXiv
Comments on this paper