ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.03250
13
0

ABC: Efficient Selection of Machine Learning Configuration on Large Dataset

8 November 2018
Silu Huang
Chi Wang
Bolin Ding
S. Chaudhuri
ArXivPDFHTML
Abstract

A machine learning configuration refers to a combination of preprocessor, learner, and hyperparameters. Given a set of configurations and a large dataset randomly split into training and testing set, we study how to efficiently select the best configuration with approximately the highest testing accuracy when trained from the training set. To guarantee small accuracy loss, we develop a solution using confidence interval (CI)-based progressive sampling and pruning strategy. Compared to using full data to find the exact best configuration, our solution achieves more than two orders of magnitude speedup, while the returned top configuration has identical or close test accuracy.

View on arXiv
Comments on this paper