ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.02459
64
16
v1v2v3 (latest)

Nonlinear Evolution via Spatially-Dependent Linear Dynamics for Electrophysiology and Calcium Data

6 November 2018
M. Rußwurm
Antonio Khalil Moretti
Ziqiang Wei
Shreyas Saxena
John P. Cunningham
Liam Paninski
ArXiv (abs)PDFHTML
Abstract

Latent variable models have been widely applied for the analysis of time series resulting from experimental neuroscience techniques. In these datasets, observations are relatively smooth and possibly nonlinear. We present Variational Inference for Nonlinear Dynamics (VIND), a variational inference framework that is able to uncover nonlinear, smooth latent dynamics from sequential data. The framework is a direct extension of PfLDS; including a structured approximate posterior describing spatially-dependent linear dynamics, as well as an algorithm that relies on the fixed-point iteration method to achieve convergence. We apply VIND to electrophysiology, single-cell voltage and widefield imaging datasets with state-of-the-art results in reconstruction error. In single-cell voltage data, VIND finds a 5D latent space, with variables akin to those of Hodgkin-Huxley-like models. VIND's learned dynamics are further quantified by predicting future neural activity. VIND excels in this task, in some cases substantially outperforming current methods.

View on arXiv
Comments on this paper