ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.02356
20
69

Code-switching Sentence Generation by Generative Adversarial Networks and its Application to Data Augmentation

6 November 2018
Ching-Ting Chang
Shun-Po Chuang
Vasileios Argyriou
ArXivPDFHTML
Abstract

Code-switching is about dealing with alternative languages in speech or text. It is partially speaker-depend and domain-related, so completely explaining the phenomenon by linguistic rules is challenging. Compared to most monolingual tasks, insufficient data is an issue for code-switching. To mitigate the issue without expensive human annotation, we proposed an unsupervised method for code-switching data augmentation. By utilizing a generative adversarial network, we can generate intra-sentential code-switching sentences from monolingual sentences. We applied proposed method on two corpora, and the result shows that the generated code-switching sentences improve the performance of code-switching language models.

View on arXiv
Comments on this paper