ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.02338
11
3

Learning to Embed Sentences Using Attentive Recursive Trees

6 November 2018
Jiaxin Shi
Lei Hou
Meng-Ying Lei
Y. Li
Hanwang Zhang
ArXivPDFHTML
Abstract

Sentence embedding is an effective feature representation for most deep learning-based NLP tasks. One prevailing line of methods is using recursive latent tree-structured networks to embed sentences with task-specific structures. However, existing models have no explicit mechanism to emphasize task-informative words in the tree structure. To this end, we propose an Attentive Recursive Tree model (AR-Tree), where the words are dynamically located according to their importance in the task. Specifically, we construct the latent tree for a sentence in a proposed important-first strategy, and place more attentive words nearer to the root; thus, AR-Tree can inherently emphasize important words during the bottom-up composition of the sentence embedding. We propose an end-to-end reinforced training strategy for AR-Tree, which is demonstrated to consistently outperform, or be at least comparable to, the state-of-the-art sentence embedding methods on three sentence understanding tasks.

View on arXiv
Comments on this paper