ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.02275
9
25

NIPS4Bplus: a richly annotated birdsong audio dataset

6 November 2018
Veronica Morfi
Madhusanka Liyanage
An Braeken
H. Glotin
D. Stowell
    VLM
ArXivPDFHTML
Abstract

Recent advances in birdsong detection and classification have approached a limit due to the lack of fully annotated recordings. In this paper, we present NIPS4Bplus, the first richly annotated birdsong audio dataset, that is comprised of recordings containing bird vocalisations along with their active species tags plus the temporal annotations acquired for them. Statistical information about the recordings, their species specific tags and their temporal annotations are presented along with example uses. NIPS4Bplus could be used in various ecoacoustic tasks, such as training models for bird population monitoring, species classification, birdsong vocalisation detection and classification.

View on arXiv
Comments on this paper