ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.01908
16
1

Fast Non-Bayesian Poisson Factorization for Implicit-Feedback Recommendations

5 November 2018
David Cortes
ArXivPDFHTML
Abstract

This work explores non-negative low-rank matrix factorization based on regularized Poisson models (PF or "Poisson factorization" for short) for recommender systems with implicit-feedback data. The properties of Poisson likelihood allow a shortcut for very fast computations over zero-valued inputs, and oftentimes results in very sparse factors for both users and items. Compared to HPF (a popular Bayesian formulation of the problem with hierarchical priors), the frequentist optimization-based approach presented here tends to produce better top-N recommendations with significantly shorter fitting times, on top of having sparse solutions.

View on arXiv
Comments on this paper