28
31

When Do Envy-Free Allocations Exist?

Abstract

We consider a fair division setting in which mm indivisible items are to be allocated among nn agents, where the agents have additive utilities and the agents' utilities for individual items are independently sampled from a distribution. Previous work has shown that an envy-free allocation is likely to exist when m=Ω(nlogn)m=\Omega(n\log n) but not when m=n+o(n)m=n+o(n), and left open the question of determining where the phase transition from non-existence to existence occurs. We show that, surprisingly, there is in fact no universal point of transition---instead, the transition is governed by the divisibility relation between mm and nn. On the one hand, if mm is divisible by nn, an envy-free allocation exists with high probability as long as m2nm\geq 2n. On the other hand, if mm is not "almost" divisible by nn, an envy-free allocation is unlikely to exist even when m=Θ(nlogn/loglogn)m=\Theta(n\log n/\log\log n).

View on arXiv
Comments on this paper