24
5

Progress and Tradeoffs in Neural Language Models

Abstract

In recent years, we have witnessed a dramatic shift towards techniques driven by neural networks for a variety of NLP tasks. Undoubtedly, neural language models (NLMs) have reduced perplexity by impressive amounts. This progress, however, comes at a substantial cost in performance, in terms of inference latency and energy consumption, which is particularly of concern in deployments on mobile devices. This paper, which examines the quality-performance tradeoff of various language modeling techniques, represents to our knowledge the first to make this observation. We compare state-of-the-art NLMs with "classic" Kneser-Ney (KN) LMs in terms of energy usage, latency, perplexity, and prediction accuracy using two standard benchmarks. On a Raspberry Pi, we find that orders of increase in latency and energy usage correspond to less change in perplexity, while the difference is much less pronounced on a desktop.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.