ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.00270
17
163

Hierarchical Long Short-Term Concurrent Memory for Human Interaction Recognition

1 November 2018
Xiangbo Shu
Jinhui Tang
Guo-Jun Qi
Wei Liu
Jian Yang
    HAI
ArXivPDFHTML
Abstract

In this paper, we aim to address the problem of human interaction recognition in videos by exploring the long-term inter-related dynamics among multiple persons. Recently, Long Short-Term Memory (LSTM) has become a popular choice to model individual dynamic for single-person action recognition due to its ability of capturing the temporal motion information in a range. However, existing RNN models focus only on capturing the dynamics of human interaction by simply combining all dynamics of individuals or modeling them as a whole. Such models neglect the inter-related dynamics of how human interactions change over time. To this end, we propose a novel Hierarchical Long Short-Term Concurrent Memory (H-LSTCM) to model the long-term inter-related dynamics among a group of persons for recognizing the human interactions. Specifically, we first feed each person's static features into a Single-Person LSTM to learn the single-person dynamic. Subsequently, the outputs of all Single-Person LSTM units are fed into a novel Concurrent LSTM (Co-LSTM) unit, which mainly consists of multiple sub-memory units, a new cell gate and a new co-memory cell. In a Co-LSTM unit, each sub-memory unit stores individual motion information, while this Co-LSTM unit selectively integrates and stores inter-related motion information between multiple interacting persons from multiple sub-memory units via the cell gate and co-memory cell, respectively. Extensive experiments on four public datasets validate the effectiveness of the proposed H-LSTCM by comparing against baseline and state-of-the-art methods.

View on arXiv
Comments on this paper