ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.00266
32
1
v1v2 (latest)

Learning to Describe Phrases with Local and Global Contexts

1 November 2018
Shonosuke Ishiwatari
Hiroaki Hayashi
Naoki Yoshinaga
Graham Neubig
Shoetsu Sato
Masashi Toyoda
ArXiv (abs)PDFHTML
Abstract

When reading a text, it is common to become stuck on unfamiliar words and phrases, such as polysemous words with novel senses, rarely used idioms, Internet slang, or emerging entities. At first, we attempt to figure out the meaning of those expressions from their context, and ultimately we may consult a dictionary for their definitions. However, rarely-used senses or emerging entities are not always covered by the hand-crafted definitions in existing dictionaries, which can cause problems in text comprehension. This paper undertakes a task of describing (or defining) a given expression (word or phrase) based on its usage contexts, and presents a novel neural-network generator for expressing its meaning as a natural language description. Experimental results on four datasets (including WordNet, Oxford and Urban Dictionaries, non-standard English, and Wikipedia) demonstrate the effectiveness of our method over previous methods for definition generation[Noraset+17; Gadetsky+18; Ni+17].

View on arXiv
Comments on this paper