ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.00185
13
14

Dial2Desc: End-to-end Dialogue Description Generation

1 November 2018
Haojie Pan
Junpei Zhou
Zhou Zhao
Yan Liu
Deng Cai
Min Yang
    VLM
ArXivPDFHTML
Abstract

We first propose a new task named Dialogue Description (Dial2Desc). Unlike other existing dialogue summarization tasks such as meeting summarization, we do not maintain the natural flow of a conversation but describe an object or an action of what people are talking about. The Dial2Desc system takes a dialogue text as input, then outputs a concise description of the object or the action involved in this conversation. After reading this short description, one can quickly extract the main topic of a conversation and build a clear picture in his mind, without reading or listening to the whole conversation. Based on the existing dialogue dataset, we build a new dataset, which has more than one hundred thousand dialogue-description pairs. As a step forward, we demonstrate that one can get more accurate and descriptive results using a new neural attentive model that exploits the interaction between utterances from different speakers, compared with other baselines.

View on arXiv
Comments on this paper