ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.13105
44
68
v1v2v3 (latest)

DBSCAN++: Towards fast and scalable density clustering

31 October 2018
J. Jang
Heinrich Jiang
ArXiv (abs)PDFHTML
Abstract

DBSCAN is a classical density-based clustering procedure with tremendous practical relevance. However, DBSCAN implicitly needs to compute the empirical density for each sample point, leading to a quadratic worst-case time complexity, which is too slow on large datasets. We propose DBSCAN++, a simple modification of DBSCAN which only requires computing the densities for a chosen subset of points. We show empirically that, compared to traditional DBSCAN, DBSCAN++ can provide not only competitive performance but also added robustness in the bandwidth hyperparameter while taking a fraction of the runtime. We also present statistical consistency guarantees showing the trade-off between computational cost and estimation rates. Surprisingly, up to a certain point, we can enjoy the same estimation rates while lowering computational cost, showing that DBSCAN++ is a sub-quadratic algorithm that attains minimax optimal rates for level-set estimation, a quality that may be of independent interest.

View on arXiv
Comments on this paper