ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.13097
21
12

Attentive Neural Network for Named Entity Recognition in Vietnamese

31 October 2018
Kim Anh Nguyen
Ngan T. Dong
K. Nguyen
ArXivPDFHTML
Abstract

We propose an attentive neural network for the task of named entity recognition in Vietnamese. The proposed attentive neural model makes use of character-based language models and word embeddings to encode words as vector representations. A neural network architecture of encoder, attention, and decoder layers is then utilized to encode knowledge of input sentences and to label entity tags. The experimental results show that the proposed attentive neural network achieves the state-of-the-art results on the benchmark named entity recognition datasets in Vietnamese in comparison to both hand-crafted features based models and neural models.

View on arXiv
Comments on this paper