23
0

Counting in Language with RNNs

Abstract

In this paper we examine a possible reason for the LSTM outperforming the GRU on language modeling and more specifically machine translation. We hypothesize that this has to do with counting. This is a consistent theme across the literature of long term dependence, counting, and language modeling for RNNs. Using the simplified forms of language -- Context-Free and Context-Sensitive Languages -- we show how exactly the LSTM performs its counting based on their cell states during inference and why the GRU cannot perform as well.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.