ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.11981
111
1346
v1v2v3 (latest)

GOT-10k: A Large High-Diversity Benchmark for Generic Object Tracking in the Wild

29 October 2018
Lianghua Huang
Xin Zhao
Kaiqi Huang
ArXiv (abs)PDFHTML
Abstract

In this work, we introduce a large high-diversity database for generic object tracking, called GOT-10k. GOT-10k is backboned by the semantic hierarchy of WordNet. It populates a majority of 563 object classes and 87 motion patterns in real-world, resulting in a scale of over 10 thousand video segments and 1.5 million bounding boxes. To our knowledge, GOT-10k is by far the richest motion trajectory dataset, and its coverage of object classes is more than a magnitude wider than similar scale counterparts. By publishing GOT-10k, we hope to encourage the development of generic purposed trackers that work for a wide range of moving objects and under diverse real-world scenarios. To promote generalization and avoid the evaluation results biased to seen classes, we follow the one-shot principle in dataset splitting where training and testing classes are zero-overlapped. We also carry out a series of analytical experiments to select a compact while highly representative testing subset -- it embodies 84 object classes and 32 motion patterns with only 180 video segments, allowing for efficient evaluation. Finally, we train and evaluate a number of representative trackers on GOT-10k and analyze their performance. The evaluation results suggest that tracking in real-world unconstrained videos is far from being solved, and only 40% of frames are successfully tracked using top ranking trackers. All the dataset, evaluation toolkit and baseline results will be made available.

View on arXiv
Comments on this paper