ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.09690
15
4
v1v2v3v4 (latest)

Challenges of Convex Quadratic Bi-objective Benchmark Problems

23 October 2018
Tobias Glasmachers
ArXiv (abs)PDFHTML
Abstract

Convex quadratic objective functions are an important base case in state-of-the-art benchmark collections for single-objective optimization on continuous domains. Although often considered rather simple, they represent the highly relevant challenges of non-separability and ill-conditioning. In the multi-objective case, quadratic benchmark problems are under-represented. In this paper we analyze the specific challenges that can be posed by quadratic functions in the bi-objective case. Our construction yields a full factorial design of 54 different problem classes. We perform experiments with well-established algorithms to demonstrate the insights that can be supported by this function class. We find huge performance differences, which can be clearly attributed to two root causes: non-separability and alignment of the Pareto set with the coordinate system.

View on arXiv
Comments on this paper